交错式PFC技术趋势及新颖的单芯片交错式PFC控制器的应用

0 Comments

近年来,在一些对外形因数有严格要求的应用中,如纤薄型液晶电视或笔记本适配器等,一种新兴的功率因数校正(PFC)技术-交错式PFC的使用越来越多。所谓交错式PFC,是在原本单个较大功率PFC段的地方并行放置2个功率为其一半的较小功率PFC段来替代,参见图1。这两个功率较小的PFC段以180°的相移交替工作,总输入电流(IL(tot))和输出电流(ID(tot))纹波都将大幅降低。

虽然交错式PFC使用相对较多的元器件,但却拥有很多优势。例如,150 W的PFC比300 W PFC更易于设计、便于采取模块化途径、散热更好及可以扩展临界导电模式(CrM)应用范围等。另外,两个不连续导电模式(DCM) PFC看上去象一个连续导电模式(CCM) PFC,简化了电磁干扰(EMI)滤波设计,减小输出均方根(RMS)电流,从而减少损耗及发热,提高设计的可靠性。尤为值得称道的是,交错式PFC支持使用尺寸更小的元器件,从而利于纤薄设计,增强产品卖点。

图1所示的交错式PFC是一种分立式的解决方案,采用了2颗NCP1601芯片。NCP1601是一款紧凑的固定频率DCM或CrM PFC控制器,采用SOIC-8或PDIP-8封装,能够充分利用DCM及CrM这两种工作模式的优势,如DCM限制最大开关频率,CrM限制升压二极管、MOSFET及电感的最大电流,降低成本及提升电路可靠性。这2颗NCP1601 PFC控制器驱动2个PFC分支,这2个分支同步但独立工作,从而保证了DCM工作模式(零电流检测),没有CCM工作模式的风险,且在满载条件下2个分支都进入CrM工作模式。

与上述分立式交错PFC不同,NCP1631是安森美半导体新推出的一款单芯片2相交错式PFC控制器,采用SOIC-16封装,替代2颗NCP1601,驱动2个PFC支路,提供接近1的高功率因数。这器件可以实现同样的低高度设计,适合任何需要PFC的离线式应用尤其是纤薄型如平板电视,典型应用示意图如图2所示。

对于交错式PFC的2个支路而言,有两种方案来工作。其中一种是主/从方案,即主支路自由工作,而从支路以180°相移跟随主支路工作。这种方案的主要挑战是维持CrM工作(无CCM,无死区时间)。另一种方案是交互相位方案,即每个相位都恰当工作在CrM,且两个相位交互作用,设定180°相移。这种方案主要的挑战是保持恰当的相移,因为虽然维持了CrM工作,但若其中某个相位的导通时间发生扰动,则可能会让180°相移减弱。NCP1631选择的是交互相位方案,两个支路独立工作,故两个相位必然工作在频率钳位临界导电模式(FCCrM),防止了出现不需要的死区时间或CCM序列的风险。此外,NCP1631内置振荡器充当交错式时钟产生器,管理异相工作,使两个相位交互作用,并在包括启动、过流保护(OCP)或瞬态序列等所有条件下持续180°相移工作。

NCP1631满载时工作在CrM,轻载时及接近线路过零点时工作在DCM,从而充当频率钳位(由振荡器提供)的CrM工作器,优化完整负载范围内的能效。FCCrM还缩小要电磁干扰(EMI)滤波的频率范围,不需要大尺寸电感以限制频率范围,支持使用小尺寸电感,如使用150 µH电感(PQ2620)可用于宽主电源范围的300 W PFC应用。此外,NCP1631还支持频率反走,降低轻载时的钳位频率,进一步改善轻载能效。测试显示,频率反走技术不仅提升轻载和空载时的能效。

NCP1631具有高保护等级,提供过流保护、浪涌电流检测、单独引脚用于过压保护(OVP)及欠压保护(UVP)等。例如,芯片上的CS引脚监测负电压VCS,由于VCS与两个交错式支路消耗的总输入电流Iin成正比,故表示可监测Iin。其中CS引脚电流ICS在CS引脚上保持0 V电压;若ICS超过210 µA,就会触发过流保护。这个CS引脚同样提供浪涌电流检测,当ICS超过14 µA(信号处于高电平)时,就会关闭输出驱动,防止损坏MOSFET。芯片上单独OVP/UVP引脚用于输出过压及欠压保护。此外,BO引脚用于输入欠压(BO)检测,带50 ms消隐延迟,符合维持时间要求。NCP1631的输出引脚功能描述见图3。NCP1631的另外一项重要特点是能够提供“pfcOK”信号,能用于启用/关闭下行转换器,简化下行转换器设计。在PFC段正常工作时,pfcOK信号是高电平(5 V),能够用作5 V电源(电流能力5 mA)。否则,在任何时候检测到重要故障(如欠压锁定条件、热关闭、欠压保护、输入欠压、闩锁/关闭、Rt引脚开路等)而关闭,或在PFC段获得额定大电压前的启动相位期间,pfcOK信号处于低电平。此外,NCP1631还具备前馈功能,从而改善环路补偿。能效测试结果及影响因素对于基于NCP1631的300 W、宽电压范围PFC预转换器演示板而言,输出电压通常为390 V,满载时输出电流为770 mA,20%负载时则为154 mA。这两类输出电流一般以相同工具测量,在10%及20%这样的轻载条件下测量必须特别细心,因为1 mA的误差就可能导致较大的能效差别。例如,20%负载时,输入功率为63 W,在154 mA正确值的基础上,若产生1 mA的误差,如测得为153 mA或155 mA,相应的能效就分别为:100 x 390 x 0.153/63 = 94.7%,及100 x 390 x 0.155/63 = 95.9%,能效相差高达1.2%。值得注意的是,PFC能效并不只取决于控制模式,电感、MOSFET、二极管、EMI滤波器等都会影响能效。例如,采用200 µH PQ2625电感与采用150 µH PQ2620电感时,约输出负载高于约50%,则能效差别显著;相当,在轻载条件下,由于频率反走功能的缘故,能效相差极小。

测试显示,对于基于NCP1631的300 W、宽电压范围PFC预转换器演示板具有极高能效。在20%至100%负载范围下,115 Vac线 Vac线%。总结:交错式PFC支持使用较小的元器件,能够改善热性能、增大临界导电模式(CrM)功率范围并减小电流纹波,非常适合对外形因数要求极为严格的纤薄应用,如最新的超薄液晶电视等。安森美半导体在此前以2颗较小NCP1601实现分立式交错式PFC的基础上,新推出了新颖的2相式频率钳位临界导电模式(FCCrM) PFC控制器NCP1631,以单颗IC集成构建强固及紧凑的2相交错式PFC段所需的全部特性,且外部元件极少。FCCrM及NCP1631提供的频率反走功能支持使用小电感,测试显示,在完整负载范围内均提供高能效。

Navitas半导体公司表示,戴尔首次使用其GaNFast氮化镓(GaN)技术的功率IC。Navitas成立于2014年,推出了据称是首款商用GaN功率IC。该公司表示,其专有的“AllGaN”工艺设计套件(PDK)将GaN功率场效应晶体管(FET)与GaN模拟和逻辑电路单片集成,从而为移动,消费类,企业级,电动汽车和新能源市场应用提供了更快的充电速度,更高的功率密度和更多的能耗节省。戴尔USB-C增强型电源适配器PA901是一款双输出快速充电器,可通过USB-C电缆提供90W功率,可为笔记本电脑进行大功率充电;另外,通过USB-A还可提供10W功率,可同时为智能手机充电。该适配器采用Dell Express Charge技术,在短

经常用华硕笔记本电脑的朋友,相信对华硕电源适配器都非常了解,出于对商标的了解,华硕电源适配器也是比较好认的。所以对于华硕电源适配器我们并不陌生。虽然认识,但是华硕电源适配器怎么拆也是一个问题。大家都看的到它的表面是没有螺丝的,所以想要学习拆华硕电源适配器的朋友就需要用心学习下面的方法了。今天小编就给大家讲讲华硕电源适配器拆解方法步骤,华硕电源适配器怎么拆,请往下了解。华硕电源适配器怎么拆笔记本电脑电源适配器的上下盖为注塑封装或是用强力胶粘合的,不用任何螺丝,所以一般只能借助暴力来破解。不过,只要方法得当,拆解后的电源适配器完全可以恢复原样,不仔细观察几乎看不出有拆开过的痕迹。华硕电源适配器怎么拆,把电源适配器横向侧放置在白纸上,用电

当今的笔记本电脑正在向超薄型发展,这一设计趋势带给系统工程师的最大设计挑战是超薄电源适配器。如何以一个合理的成本设计出能够装入厚度不足15毫米机壳中的电源?如何对它进行有效的散热设计?以及如何使它满足最新的能源之星标准及其它全球性能效标准?要克服所有这些挑战并非易事。请看PI技术专家是如何解决这些难题的。对于力求新颖别致的笔记本电脑而言,它应该外形纤薄,而且越薄越好。当然,它的电源也应如此。但是,要想以合理的成本设计出能够装入厚度不足15毫米机壳中的电源还是极具挑战性的。尽管笔记本电源必须满足所有标准规范,但在超薄型适配器中并没有为比较占空间的散热片或散热器预留空间。因此,要想降低热量的产生,电源应具有极高的效率,并且必须对其进行有

人们生活条件越来越优越,基本上人人一本笔记本,使用笔记本电脑方便了我们生活的各个方面。而笔记本电源适配器是笔记本的重要组成配件之一,倘若笔记本电源适配器出现故障,笔记本或其他配件就不能正常的工作。这时候你要怎么办?重新配置一个电源适配器要花费上百元,二手的也便宜不到哪里去。拿到外面维修又不划算,想自己维修又不懂专业技能,很伤脑筋! 其实,许多电源适配器出现的问题并不严重,一般可以自己尝试拆解维修,这样就不用破费花钱购买新的了。那么下面由乐丰电器专家为大家讲解电源适配器的拆解方法。 拆解前我们先来了解一下电源适配器的部件名称。 1:压敏电阻 2:保险丝 3:电感线:整流桥

的方法 /

超薄笔记本适配器电路:65W, 19.7V, 3.3A, 90–265 VAC输入反激式电源电路

电路 /

对于力求新颖别致的笔记本电脑而言,它应该外形纤薄,且越薄越好,当然,它的电源也应如此。但要以合理的成本设计出能够装入厚度不足15毫米的机壳中的电源非常具有挑战性。尽管笔记本电源必须满足所有标准规范,但在超薄型适配器中并没有为体积较大的散热片或散热器预留空间。因此,为减少热量产生,电源应具有极高效率,且必须对其进行有效的散热设计。 本文介绍反激式转换器的一种创新设计方法,它通过先进的控制技术来提升所有功率水平的效率,并实现超低空载功耗。这种设计方法可使制造商以与标准“砖块式”笔记本适配器相当的成本生产出超薄笔记本适配器,同时这些超薄笔记本适配器的性能还超出了能源之星EPS v2.0的功率效率要求和其它全球性能效标准。 图1:典型的反

设计 /

等应用的超低待机能耗方案

型号说明光纤面板型号说明光纤适配器型号说明

电源参考设计

ELEXCON 2022 深圳国际电子展11月5日(新档期)开幕,速领门票!更有N重好礼等你拿!

艾迈斯欧司朗携手TactoTek推出模内结构电子RGB LED新品,实现汽车照明创新

Vishay推出谐振变压器/电感器,节省基板空间、简化LLC应用PCB布局

e络盟加大投入拓展Traco Power产品阵容,以确保充足现货库存及供应链安全

浩亭携新品Han® HPR单极连接器亮相2022年柏林国际轨道交通技术展览会

峰值能效超过98%!安森美用于双向车载充电的6.6 kW CLLC参考设计

while(ADC_GetFlagStatus(ADC1, ADC_FLAG_ADRDY)==RESET)死循环死等待的问题

BOE(京东方)供货理想L8全系列“双联屏+吸顶屏” 引领智能座舱人车交互新未来

2022华为Vision智慧屏新品阵容线上亮相,包含首款游戏智慧屏Z电竞版

下载有礼:2017年泰克亚太专家大讲堂第二期: 100G/200G/400G通讯标准发展趋势及解决方案

有奖评测+DIY:玩转新版1.3元单片机CH554,赢以太网分析仪器/USB分析仪

学习有礼,分享也有礼!跟着小梅哥,一起intel SoC FPGA走起!

站点相关:分立器件转换器稳压稳流数字电源驱动电源模块电池管理其他技术宽禁带半导体LED网络通信消费电子电源设计测试与保护逆变器控制器变压器电源百科电源习题与教程


发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注